一、如何用excel对数据进行聚类分析
用excel对数据进行聚类分析的方法如下:
因为数据量纲不同将影响聚类分析的结果,所以在分析之前要对数据进行无量纲化处理,无量纲化处理的方法有很多种,我们可以根据自己的实际需要进行选择。本经验示例较为简单,只需要对有序尺度数据进行无量纲化。
对于有序尺度,可以采用数值编码的方式将其转换为间距型。
如:优、良、中、及格、不及格
首选将外语的数据类型改成数值型,然后将各个数据属性值改为“5”,“5”,“4”,“4”,“4”,“2”分别对应之前的优,优,良、良、良和及格。
指标类型中有“极大型”、“极小型”、“居中型”和“区间型”指标,所以在聚类之前必须对指标的类型进行一致化处理。本例一致化处理见附图。
选择“分析”--》“分类”--》“系统聚类”进入系统聚类设置选项卡。
进入选项卡,将标准化后的数据作为变量。然后可以在当中选择聚类的各种方式方法及要生成的图标,这里我们勾选上树状图后其他默认。点击确定即可看到spss自动处理输出的结果。
根据spss输出的结果进行分析。
二、怎样对数据进行聚类分析
聚类分析用于将样本进行分类处理,通常是以定量数据作为分类标准;用户可自行设置聚类数量,如果不进行设置,系统会提供默认建议;通常情况下,建议用户设置聚类数量介于3~6个之间。
SPSSAU操作如下:
聚类个数:聚类个数设置为几类主要以研究者的研究思路为标准,如果不进行设置,SPSSAU默认聚类个数为3,通常情况下,建议设置聚类数量介于3~6个之间。
标准化:聚类算法是根据距离进行判断类别,因此一般需要在聚类之前进行标准化处理,SPSSAU默认是选中进行标准化处理。数据标准化之后,数据的相对大小意义还在(比如数字越大GDP越高),但是实际意义消失了。
保存类别:分析选择保存‘保存类别’,SPSSAU会生成新标题用于标识,也可以右上角“我的数据”处查看到分析后的“聚类类别”。
新标题类似如下:Cluster_********。
使用聚类分析对样本进行分类,使用Kmeans聚类分析方法,从上表可以看出:最终聚类得到4类群体,此4类群体的占比分别是20.00%, 30.00%, 20.00%, 30.00%。整体来看, 4类人群分布较为均匀,整体说明聚类效果较好。
使用方差分析去探索各个类别的差异特征,从上表可知:聚类类别群体对于所有研究项均呈现出显著性(p<0.05),意味着聚类分析得到的4类群体,他们在研究项上的特征具有明显的差异性,具体差异性可通过平均值进行对比,并且最终结合实际情况,对聚类类别进行命名处理。
从上述结果看,所有研究项均呈现出显著性,说明不同类别之间的特征有明显的区别,聚类的效果较好。